Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
18th International Symposium on Bioinformatics Research and Applications, ISBRA 2022 ; 13760 LNBI:255-262, 2022.
Article in English | Scopus | ID: covidwho-2283403

ABSTRACT

Since the beginning of the COVID-19 pandemic, whole-genome sequences of SARS-CoV-2 have been continuously added to public databases, such as NCBI Virus [4] and GISAID [3]. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2.
J Biol Chem ; 297(4): 101175, 2021 10.
Article in English | MEDLINE | ID: covidwho-1401575

ABSTRACT

The spike protein is the main protein component of the SARS-CoV-2 virion surface. The spike receptor-binding motif mediates recognition of the human angiotensin-converting enzyme 2 receptor, a critical step in infection, and is the preferential target for spike-neutralizing antibodies. Posttranslational modifications of the spike receptor-binding motif have been shown to modulate viral infectivity and host immune response, but these modifications are still being explored. Here we studied asparagine deamidation of the spike protein, a spontaneous event that leads to the appearance of aspartic and isoaspartic residues, which affect both the protein backbone and its charge. We used computational prediction and biochemical experiments to identify five deamidation hotspots in the SARS-CoV-2 spike protein. Asparagine residues 481 and 501 in the receptor-binding motif deamidate with a half-life of 16.5 and 123 days at 37 °C, respectively. Deamidation is significantly slowed at 4 °C, indicating a strong dependence of spike protein molecular aging on environmental conditions. Deamidation of the spike receptor-binding motif decreases the equilibrium constant for binding to the human angiotensin-converting enzyme 2 receptor more than 3.5-fold, yet its high conservation pattern suggests some positive effect on viral fitness. We propose a model for deamidation of the full SARS-CoV-2 virion illustrating how deamidation of the spike receptor-binding motif could lead to the accumulation on the virion surface of a nonnegligible chemically diverse spike population in a timescale of days. Our findings provide a potential mechanism for molecular aging of the spike protein with significant consequences for understanding virus infectivity and vaccine development.


Subject(s)
SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Motifs , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Humans , Hydrogen-Ion Concentration , Interferometry , Kinetics , Protein Binding , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry
3.
Comput Struct Biotechnol J ; 19: 759-766, 2021.
Article in English | MEDLINE | ID: covidwho-1036889

ABSTRACT

The recent emergence of the novel SARS-CoV-2 in China and its rapid spread in the human population has led to a public health crisis worldwide. Like in SARS-CoV, horseshoe bats currently represent the most likely candidate animal source for SARS-CoV-2. Yet, the specific mechanisms of cross-species transmission and adaptation to the human host remain unknown. Here we show that the unsupervised analysis of conservation patterns across the ß-CoV spike protein family, using sequence information alone, can provide valuable insights on the molecular basis of the specificity of ß-CoVs to different host cell receptors. More precisely, our results indicate that host cell receptor usage is encoded in the amino acid sequences of different CoV spike proteins in the form of a set of specificity determining positions (SDPs). Furthermore, by integrating structural data, in silico mutagenesis and coevolution analysis we could elucidate the role of SDPs in mediating ACE2 binding across the Sarbecovirus lineage, either by engaging the receptor through direct intermolecular interactions or by affecting the local environment of the receptor binding motif. Finally, by the analysis of coevolving mutations across a paired MSA we were able to identify key intermolecular contacts occurring at the spike-ACE2 interface. These results show that effective mining of the evolutionary records held in the sequence of the spike protein family can help tracing the molecular mechanisms behind the evolution and host-receptor adaptation of circulating and future novel ß-CoVs.

4.
J Med Microbiol ; 69(6): 864-873, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-436403

ABSTRACT

Introduction. The emergence of SARS-CoV-2 has taken humanity off guard. Following an outbreak of SARS-CoV in 2002, and MERS-CoV about 10 years later, SARS-CoV-2 is the third coronavirus in less than 20 years to cross the species barrier and start spreading by human-to-human transmission. It is the most infectious of the three, currently causing the COVID-19 pandemic. No treatment has been approved for COVID-19. We previously proposed targets that can serve as binding sites for antiviral drugs for multiple coronaviruses, and here we set out to find current drugs that can be repurposed as COVID-19 therapeutics.Aim. To identify drugs against COVID-19, we performed an in silico virtual screen with the US Food and Drug Administration (FDA)-approved drugs targeting the RNA-dependent RNA polymerase (RdRP), a critical enzyme for coronavirus replication.Methodology. Initially, no RdRP structure of SARS-CoV-2 was available. We performed basic sequence and structural analysis to determine if RdRP from SARS-CoV was a suitable replacement. We performed molecular dynamics simulations to generate multiple starting conformations that were used for the in silico virtual screen. During this work, a structure of RdRP from SARS-CoV-2 became available and was also included in the in silico virtual screen.Results. The virtual screen identified several drugs predicted to bind in the conserved RNA tunnel of RdRP, where many of the proposed targets were located. Among these candidates, quinupristin is particularly interesting because it is expected to bind across the RNA tunnel, blocking access from both sides and suggesting that it has the potential to arrest viral replication by preventing viral RNA synthesis. Quinupristin is an antibiotic that has been in clinical use for two decades and is known to cause relatively minor side effects.Conclusion. Quinupristin represents a potential anti-SARS-CoV-2 therapeutic. At present, we have no evidence that this drug is effective against SARS-CoV-2 but expect that the biomedical community will expeditiously follow up on our in silico findings.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Animals , Antiviral Agents/therapeutic use , Betacoronavirus/enzymology , Betacoronavirus/genetics , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/virology , Drug Evaluation, Preclinical/methods , Drug Synergism , Humans , Molecular Conformation , Pandemics , Phylogeny , Pneumonia, Viral/virology , RNA-Dependent RNA Polymerase/drug effects , Rifampin/pharmacology , SARS-CoV-2 , Sequence Alignment , Sequence Analysis, Protein , Virginiamycin/analogs & derivatives , Virginiamycin/pharmacology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL